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1. Introduction

Electric-magnetic duality of N = 1 gauge theories in four dimensions is an important

tool to understand supersymmetric generalizations of quantum chromodynamics [1]. For

instance, it has recently been used to argue for the generic existence of long-lived meta-

stable supersymmetry breaking vacua in supersymmetric gauge theories [2]. In order to

further exploit the fruitful interplay between gauge theory and string theory, it is natural

to realize Seiberg duality within a brane set-up in string theory [3, 4]. To sharpen the

embedding map, it is useful to incorporate the backreaction of the heaviest, NS5-branes,

used within the brane set-up into the background geometry. It is possible to do this

in a double scaling limit [5, 6]. The D-branes that realize the gauge theories can then be
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described by an exact boundary conformal field theory, and one can analyze Seiberg duality

exactly within string theory, as argued and realized in [7] for supersymmetric QCD with

SU(Nc) gauge group. It is worth trying to extend this to SO and Sp gauge theories, since

both the bulk and boundary conformal field theories, as well as the gauge theories, realize

new physical phenomena.

In the rest of the introduction we review Seiberg duality in SO/Sp gauge theories [8]

in the context of NS5/D-brane set-ups in type IIA string theory, in as far as it is useful

for our present purposes. We then move to a worldsheet description of the backreacted

theory in a double scaling limit in section 2. The main technical result in this section is

the computation of the supersymmetric crosscap states built on the representations of the

N = 2 superconformal algebra. In the modular bootstrap procedure used to construct

D-branes in Liouville theory [9, 10] and their supersymmetric extensions, [11 – 14], the

crosscap states are found by requiring that, in the overlap of the crosscaps with the localized

brane, the Ω-twisted characters of the superconformal algebra are obtained in the open

string channel. We give a closed string orientifold description of the different crosscaps by

computing the Klein-bottle amplitudes. Some technical details regarding the amplitudes

are collected in the appendices. Crosscap states in the cigar background have already been

studied in detail in a “continuum limit” [15]. However, for our purposes, it is necessary to

require integral U(1)R charges so as to be able to GSO project.

In section 3, we use these crosscaps along with the boundary states described in [16, 17]

to engineer a SO/Sp gauge theory in four dimensions with flavours in the fundamental

representation. We study how electric-magnetic or Seiberg duality is realized in the gauge

theory from a worldsheet perspective, following the ideas in [7]. This involves understand-

ing how boundary states and crosscaps behave under a monodromy in the closed string

parameter space. We find that within the context of a smooth superstring background, our

results realize the results obtained in the geometric type IIA set-up involving D4 branes

and NS5 branes [4] and are consistent with field theory expectations. We conclude with a

brief discussion in section 4.

1.1 Seiberg duality from NS5/D-brane set-ups

When tackling the exact description of Seiberg duality in the double scaling limit, it will be

useful to keep in mind the bulk configuration before taking the limit. We review briefly how

Seiberg duality was analyzed by studying the low energy theory on D4 branes suspended

between the NS5 branes in type IIA string theory. The realization of Seiberg duality in

this brane set up has been discussed in detail in the literature [4, 18, 19]. As we will show,

some aspects of this description of Seiberg duality are closely related to our worldsheet

discussion.

We begin with the electric set-up as shown in figure 1. We have shown the position of

the various objects in the x6 direction. The O4 plane extends all along the x6 direction.

Note that when the O4 plane crosses an NS5 brane, it goes from the positively charged +

type to the negatively charged − type.

Flavour is realized by D6 branes to the right of the NS brane as shown in figure 1.

Since the low-energy gauge theory physics is independent of the position of the D6 brane,
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O4
+

O4
−

Nc

O4
+

NS5 NS5’ D4 D4 D6
Nf

Figure 1: Electric brane set-up, including an orientifold four-plane that changes type, and Nc

colour D4-branes and Nf flavour D4-branes ending on D6-branes.

O4
+

O4
−

NS5’

c

O4
+

D4 D4 D6
Nf

NS5

N−N+4
f

Figure 2: Magnetic brane set-up, including an orientifold four-plane that changes type, and Nf −
Nc + 4 colour D4-branes and Nf flavour D4-branes ending on D6-branes.

one can also take the limit when it is at infinity. This limit has an interesting relation to the

geometric engineering of gauge theories using D6 branes wrapped on the 3-sphere [20, 21]

in the deformed conifold. Seiberg duality in that context was implemented by the so-called

µ−transition. The deformed conifold is defined as the zero locus

x2 + y2 + z2 + u2 = µ in C
4 . (1.1)

The µ−transition amounts to the operation µ → −µ. In the absence of flavour branes,

such transitions have been studied in detail in [22] by lifting the brane and orientifolds to

M-theory following earlier work in [23].

Now the NS5 brane configuration we started with is related to the geometric set-up

by T-dualities [24, 6]. It is known that the closed string parameter µ of the conifold maps

to the relative position of the NS and NS’ branes. Electric-magnetic duality is therefore

implemented in the IIA brane set-up by exchanging the positions of the NS’ and NS along

the x6 direction. The presence of the orientifold implies that we necessarily pass through

a strong coupling region in order to implement Seiberg duality [19].

In order to derive the magnetic configuration, one uses the fact that a certain linking

number [3] must be conserved in the duality transition. For the NS5 brane, the linking

number is defined for each NS5-brane as [3, 4]

lNS =
1

2
(RD6 − LD6) + (LD4 − RD4) + Q(O4)(LO4 − RO4) , (1.2)

where R(X) (L(X)) refer to the number of branes of type X to the right (left) of the NS5

brane. For the electric configuration, which leads to a SO(Nc) theory with Nf flavours,

the linking number for the NS brane is equal to

lNS = −1

2
Nf + Nc − 2 . (1.3)

We count charges such that Nc D4 branes lead to a colour group of SO(Nc). We have

shown the magnetic configuration in figure 2.
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Note that we are forced to include an additional 4 D4 branes in order to leave invariant

the linking number. One can check that this brane configuration has the correct properties

of the Seiberg dual gauge theory, including the presence of the 1
2Nf (Nf + 1) mesonic fields

(the fluctuation of the D4 branes stretched between the NS’ and D6) and the superpotential

term Mqq̃.

It is the equality of the linking number in the electric and magnetic configurations that

forces us to include the 4 extra D4 branes that realize the colour gauge theory. It is not

possible to derive the generation of the 4 extra D4 branes in this semi-classical brane set-up.

See however [19] for a derivation of this phenomenon from a strong coupling analysis.

Our analysis of the IIA brane set-ups has been brief as these set-ups are fairly well

studied in the literature. We now turn to describing the bulk geometry and the associated

branes exactly in terms of conformal field theory, in a suitable limit of the NS5 brane

background.

2. Worldsheet description of the brane/orientifold system

For type IIA strings on the deformed conifold, one can define a double scaling limit

µ → 0 gs → 0 keeping
µ

gs
fixed . (2.1)

The mass of the D-branes that wrap the three-sphere remains finite. In this limit, it is

conjectured that the decoupled non-gravitational theory near the singularity has a holo-

graphic description as a string theory whose worldsheet description is the conformal field

theory [5, 6]

R
1,3 ×

[

SL(2, R)

U(1)

]

k=1

, (2.2)

where the coset conformal field theory is at supersymmetric level k = 1. We note in passing

that the relation between D-branes in NS5 backgrounds and the geometric engineering

of gauge theories using branes on the deformed conifold, that was mentioned earlier, is

consistent with this conjecture. The topological sub-sector of the CFT (2.2) has been

matched to the topological sector of the deformed conifold theory for both closed strings [25,

26] and open strings [27].

One can realize SQCD like theories in this set-up by introducing Nc D3-branes localized

at the tip of the cigar associated to an U(Nc) gauge group [16, 17] and Nf double-sheeted

D5-branes filling the whole of space-time that introduce Nf flavors into the gauge the-

ory [16, 7]. We next turn to a detailed discussion of the crosscaps and boundary states

in this background that will allow us to understand Seiberg duality from a worldsheet

perspective.

2.1 Review of cylinder amplitudes and boundary states

In [7] it was argued that a sign flip of the cigar bulk interaction coefficient µ leads to an

exact conformal field theory realization of Seiberg duality for U(Nc) gauge theories. We

recall that from the cylinder amplitudes for these branes, one could derive the one-point
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functions via a modular bootstrap procedure [10, 11, 14]. In this way one could associate

to characters of the N = 2 superconformal algebra (labeled by J,M , functions of the

conformal dimension and R-charge) particular Cardy boundary states. A further crucial

ingredient in [7] was the addition relation:

|D5, J = 0〉 = |D3〉 + |D5, J =
1

2
〉 . (2.3)

for exact boundary states. This is a consequence of an N = 2 superconformal algebra

character identity at level k = 1, relating the J = 0,M = 0 continuous character, with the

J = 1/2,M = 1/2 continuous character and the identity character.

We briefly recall a few annulus amplitudes for D-branes in the background (2.2), as

discussed in [11, 14, 16, 17, 7]. By a D3 brane in the background (2.2), we mean a D-brane

that fills R
1,3 that is tensored with the identity brane in the cigar direction. We denote

the corresponding boundary state as |D3〉 as above. Similarly, a D5 brane fills R
1,3 and

is tensored with a brane labeled by the continuous representation |D5, J,M〉. We mostly

focus on the branes with J = M = 0 and J = M = 1
2 and will neglect the M eigenvalue.

The modular bootstrap is implemented by requiring that only the identity character

appears in the self-overlap of the D3 brane while the continuous character appears in the

overlap of the D3 and the D5 branes. In what follows, we will use the notation qo = e−2πt

and qc = e−2πs for the open and closed string channel moduli. In the open string channel,

the cylinder amplitude for the overlap of the J = 1
2 D5 brane with the D3 brane is given

by

B

(

D3;J =
1

2

)

=
1

2

∫

dt

2t

∫

d4k

(2π)4
e−2πtk2

η(it)6
[Θ1,1(it)ϑ

2
00(it)+Θ1,1(it)ϑ

2
01(it)−Θ0,1(it)ϑ

2
10(it)] .

(2.4)

Similarly for the J = 0 overlap with the D3, we get

B(D3;J = 0) =
1

2

∫

dt

2t

∫

d4k

(2π)4
e−2πtk2

q
−1/4
o

η(it)6
[

Θ0,1(it)ϑ
2
00(it) − Θ0,1(it)ϑ

2
01(it)

−Θ1,1(it)ϑ
2
10(it)

]

. (2.5)

Using the identities in equation (A.4) of the appendix, one can show that both these

amplitudes vanish. All three boundary states are therefore mutually supersymmetric.

From the identity in (2.3), we see that from the difference of (2.5) and (2.4), one

obtains the D3 self-overlap. Indeed, the J = 0 representation of the N = 2 superconformal

algebra is reducible. Using the modular bootstrap method, one can modular transform

the annulus amplitude into the closed string channel and read off the D3 and D5 brane

wavefunctions for both J = 0 and J = 1
2 . This has been done in [11, 14] and we record the
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NS sector wavefunctions below:1

ΨNS,±
Id (P,w) =

C±√
2

Γ(1
2 + iP + w

2 )Γ(1
2 + iP − w

2 )

Γ(2iP )Γ(1 + 2iP )

ΨNS,±

cont,J= 1

2

(P,w) = 2
C±√

2
,

Γ(−2iP )Γ(1 − 2iP )

Γ(1
2 − iP + w

2 )Γ(1
2 − iP − w

2 )

ΨNS,±
cont,J=0(P,w) = 2

C∓√
2

cosh 2πP
Γ(−2iP )Γ(1 − 2iP )

Γ(1
2 − iP + w

2 )Γ(1
2 − iP − w

2 )
, (2.6)

where C+ = 1 and C− = eiπw. Similar expressions also exist for the RR sectors that can be

easily obtained from the expression above by spectral flow w → w + 1.

2.2 Möbius amplitudes and crosscap states

To construct crosscap states, we proceed in analogy with the boundary states. We will

perform a modular bootstrap procedure for the Möbius amplitudes for the supercoset

conformal field theory at level k = 1. It is clear how to generalize our analysis to other

levels, but we will not need the generalization for the applications in this paper. Our

starting point will be the requirement that our crosscap states have an overlap with the

identity D3-brane which is an Ω-twisted N = 2 superconformal character (as in [15]). We

then use the open-closed duality of the Möbius amplitudes and our knowledge of the D3-

brane boundary state to derive corresponding crosscap states. Afterwards, we will interpret

the crosscap states in terms of orientifolds of the bulk superstring theory by computing the

Klein-bottle amplitudes.

Twisting ordinary N = 2 superconformal characters in the open string channel by Ω

can be implemented by the substitution τ → τ + 1
2 in the untwisted characters χ(τ). One

obtains the twisted characters χΩ(τ) that take into account the action of Ω on the fermionic

oscillators. The full Möbius amplitude that corresponds to the overlap of the crosscap state

labeled by the J = 1
2 continuous character with the D3 brane (and vice versa) is then given

by

MΩ

(

D3;J =
1

2

)

=
1

2

∫

d4k

(2π)4
e−2πtk2

η(it + 1
2)6

[

Θ1,1

(

it +
1

2

)(

ϑ2
00

(

it +
1

2

)

+ ϑ2
01

(

it +
1

2

))

−Θ0,1(it +
1

2
)ϑ2

10

(

it +
1

2

)]

. (2.7)

The Möbius amplitude for the overlap of the J = 0 crosscap state with the D3 brane can

similarly be written as2

MΩ(D3;J = 0) =
e−

iπ

4

2

∫

d4k

(2π)4
e−2πtk2

q
−1/4
o

η(it+ 1
2)6

[

Θ0,1

(

it+
1

2

)(

ϑ2
00

(

it+
1

2

)

−ϑ2
01

(

it+
1

2

))

−Θ1,1

(

it +
1

2

)

ϑ2
10

(

it +
1

2

)]

(2.8)

1We suppress the µ-dependent phase factor in all wavefunctions (both for the boundary states and the

crosscaps to follow). We will come back to this point in section 4.
2The factor of e−

iπ

4 ensures that the small q expansion of the characters begins with a real number.
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Using the same theta function identities that were used to show the vanishing of the D5-D3

overlap (for τ ′ = τ + 1
2), we see that both the overlaps vanish. Thus both these crosscap

states are supersymmetric with respect to the D3 brane.

Similar to the D-brane boundary states, we define the crosscap state corresponding to

the Ω-twisted identity character as the difference between the J = 0 and J = 1
2 crosscap

state. Let us now execute the modular bootstrap and determine the closed string one-point

functions explicitly.

Modular bootstrap for the crosscap

Modular transforming the first term of the J = 1
2 Möbius amplitude into the closed string

channel, and using that the closed string and open string channel parameters are now

related by s = 1
4t , we get

MNS

Ω

(

D3;J =
1

2

)

= 8e
iπ

2

1

2

∫

ds

128π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2 )3

∫ ∞

0
dP 2ϑ01(2is) qP 2

c

e
iπ

8 ϑ01(is + 1
2 )

η(is + 1
2)3

(2.9)

The details of the modular transformation are given in the appendix. For the J = 0 Möbius

amplitude in equation (2.8), the q
− 1

4
o factor is first transformed into

e
π

8s =
√

2s

∫ ∞

0
dP cosh πP e−2πsP 2

. (2.10)

For the NS sector, we get for the J = 0 Möbius amplitude

MNS

Ω (D3;J = 0) = 4

∫

ds

128π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

∫ ∞

0
dP2 cosh πPϑ10(2is)q

P 2

c

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

.

(2.11)

Following the modular bootstrap approach that led to the boundary states, one can use

the results for the D-brane wavefunctions in equation (2.6) to derive the wavefunctions for

the crosscap states.

Let us begin with the J = 1
2 overlap in equation (2.9): expanding the theta-function

ϑ01(2is) as we did before, we get

MNS

Ω (D3;J =
1

2
) = e

iπ

2

∫

ds

32π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

∑

n∈Z

(−1)n
∫ ∞

0
dP 2 qP 2+n2

c

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

.

(2.12)

This should be rewritten in terms of the closed string wavefunctions as

2

∫

ds

128π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

∑

n∈Z

∫ ∞

0
dP ΨNS,∓

Id (−P, 2n)ΨNS,±

C,cont,J= 1

2

(P, 2n) chÑS

c,Ω(P, 2n, is) .

(2.13)
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Here, the Ω-twisted character chÑS

c,Ω is given by a twisted overlap of the Ishibashi states

chÑS

c,Ω(P, n, is) = q
P 2+ n

2

4
c

e
iπ

8 ϑ01(is + 1
2 )

η(is + 1
2 )3

. (2.14)

Note that in the overlap, only the even winding modes w = 2n appear. The crosscap state

can therefore be written as a linear combination of Ishibashi states with even winding:

|C, J =
1

2
;±〉NSNS =

∑

n∈Z

∫ ∞

0
dP ΨNS,±

C,cont,J= 1

2

(P, 2n) i(L
osc
0

+L
osc

0 ) i(J
osc
0

+J
osc

0 ) |P, 2n;±〉〉 ,

(2.15)

where the crosscap wavefunction is given by

ΨNS,±

C,cont,J= 1

2

(P, 2n) =
8√
2

i eiπn Γ(−2iP )Γ(1 − 2iP )

Γ(1
2 − iP + n)Γ(1

2 − iP − n)
. (2.16)

Let us now consider the open string contribution in the RR sector. Similar manipulations

yield that the crosscap state is a sum of only those Ishibashi states with odd winding modes

|C, J =
1

2
;±〉RR =

∑

n∈Z

∫ ∞

0
dP ΨR,±

C,cont,J= 1

2

(P, 2n − 1) i(L
osc
0

+L
osc

0 ) i(J
osc
0

+J
osc

0 ) |P, 2n ∓ 1;±〉〉

with ΨR,±

C,cont,J= 1

2

(P, 2n ∓ 1) =
8√
2

Γ(−2iP )Γ(1 − 2iP )

Γ(1
2 − iP + n)Γ(1

2 − iP − n)
. (2.17)

A similar exercise can be carried out for the J = 0 crosscap state. The wavefunctions

take the form

ΨNS,±
C,cont,J=0(P, 2n + 1) = ∓ 8√

2
cosh πP

Γ(−2iP )Γ(1 − 2iP )

Γ(1 − iP + n)Γ(−iP − n)

ΨR,±
C,cont,J=0(P, 2n) = ∓ 8√

2
eiπn cosh πP

Γ(−2iP )Γ(1 − 2iP )

Γ(1 − iP + n)Γ(−iP − n)
. (2.18)

Thus, in the NSNS sector, we find that the J = 0 crosscap has only odd winding modes

while the RR sector wavefunctions have even winding modes.

A crosscap state that has a consistent projection in the open string channel on the

identity character is the identity crosscap state, whose overlap with the D3 gives the twisted

identity character. Its wavefunction is just the difference of the J = 0 and J = 1
2 crosscap

states in equations (2.18) and (2.16). We will use this crosscap state to engineer our SO/Sp

gauge theory in the electric set-up. However, let us first complete the worldsheet analysis

and use the crosscap wavefunctions to compute the Klein bottle amplitudes associated to

the crosscap states with labels J = 1/2 and J = 0.

2.3 Klein bottle amplitudes

In order to interpret the crosscap states, it is useful to compute the Klein bottle amplitudes.

When combined with the torus amplitude, the Klein bottle projects the bulk closed string
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spectrum. By computing the Klein bottle, we can identity the action of the orientifold

projection operator on the closed strings.

Let us consider the J = 1
2 case first. Using the explicit wavefunctions obtained in the

previous section, we get, for the NS+NS+ overlap

K( 1

2
)

NS+NS+ =
1

2

∫

ds

128π4

ϑ00(is)

η3(is)

∑

n∈Z

∫ ∞

0
dP 25 cosh 2πP + cos 2nπ

(sinh 2πP )2
chNS

c (p, n, is)

=
1

2
· 24

∫

ds

128π4

ϑ00(is)

η3(is)

∑

n∈Z

∫ ∞

0
dP

qP 2+n2

c

(sinhπP )2
ϑ00(is)

η3(is)

=
1

2
· 24

∫

ds

128π4

ϑ00(is)

η3(is)

∫ ∞

0
dP

ϑ00(2is)

(sinh πP )2
qP 2

c

ϑ00(is)

η3(is)
. (2.19)

Modular transforming to the t channel using s = 1
2t , we get

K( 1

2
)

NS+NS+ =
1

2

∫

dt

128π4 t3
ϑ00(2it)

η3(2it)

∫ ∞

0

dP

(sinh πP )2
[Θ0,1(2it) + Θ1,1(2it)]

∫ ∞

0
dP ′ cos 2

√
2πPP ′ qP ′2

o

ϑ00(2it)

η3(2it)

=
1

2

∫

dt

128π4 t3
ϑ00(2it)

η3(2it)

∫ ∞

0
dP ′

[

ρNS

1,KB(P ′)ChNS(P ′, 0, 2it)

+ρNS

2,KB(P ′)ChNS(P ′, 1, 2it)
]

.(2.20)

where we have used the identity

ϑ00(τ) = ϑ00(4τ) + ϑ10(4τ) . (2.21)

Here, we have defined the extended characters (at level 1) [11]

ChNS(P,m, τ) = qP 2

Θm,1(τ)
ϑ00(τ)

η3(τ)
, (2.22)

and the density of states

ρNS

1,KB(P ′) = ρNS

2,KB(P ′) =

∫ ∞

0
dP

cos 2
√

2πPP ′

(sinhπP )2
. (2.23)

We note that the exchange of momentum integrals in P and P ′ is allowed in this case —

there are no subtleties such as those discussed in [28].

One can do similar calculations for the NS+NS− and R+R+ as well. One can then

check that the total Klein bottle amplitude vanishes. These calculations as well as the

analogous ones for the J = 0 crosscap state are carried out in appendix C. One important

difference between the J = 0 and the J = 1
2 Klein-bottle computation is that, unlike the

infrared divergent density of states in (2.23), the density of states for the J = 0 crosscap

is a δ-function at P = 0. This point will be crucial later on when we engineer the gauge

theories of interest and we will come back to this point shortly, but we first give a closed

string interpretation of these crosscap states in terms of projection operators.
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Interpretation

• Let us first study the bulk superstring theory in which we only add the J = 1/2

crosscap state. From comparison of the asymptotics (or volume divergence) of the

Klein-bottle amplitude and the torus amplitude, we conclude that the bulk orientifold

is the one obtained from modding out the type IIB non-critical superstring theory

by the operation Ω. Indeed the Klein bottle amplitude (2.20) has the interpretation

as a trace over the closed string Hilbert space with Ω inserted.

• If we consider the bulk theory supplemented with the crosscap state J = 0 only, then

from the Klein-bottle amplitude, we derive that we have the type IIB bulk theory

modded out by the operation Ω(−1)n. The operator (−1)n gives an extra minus sign

to all Klein-bottle contributions with odd momentum n along the angular direction

of the cigar, compared to the Klein bottle amplitude with only Ω inserted. We note

that the operation (−1)n is coded in coordinate space as the shift θ → θ+π, which is

a symmetry of the cigar winding condensate only on the condition that the parameter

µ is real. Moreover, geometrically, the action only has a fixed point at the tip of the

cigar, leading to the fact that the corresponding Klein bottle amplitude does not

exhibit a volume divergence (in the dilaton direction).

• The J = 1
2 crosscap has a continuous density of states (2.23) which diverges as P → 0

(like the D5 branes) whereas the J = 0 crosscap, as shown in appendix C, has a δ-

function density localized strictly at P = 0. This tells us that the former is extended

along the cigar direction while the latter is localized at the tip. We can also verify

this from the form of the wavefunctions in equations (2.16), (2.18).

• Finally, when we add both crosscap states to the theory, we observe that they do not

generate cross-terms in the Klein-bottle amplitude, due to the orthogonality of the

Ishibashi states. When we add both Klein bottle amplitudes to the torus amplitude,

they generate a combined (1 + Ω + Ω(−1)n) orientifold/orbifold. In a closed string

theory modded out by the above two actions, one would be forced (from the closure

of the group) to include an orbifold projection (−1)n as well, leading to a projection

of the form 1
4(1 + Ω)(1 + (−1)n).

• We note that the J = 1/2 crosscap states only exchange massive strings, including

massive gravitons. The exchanged states have worldsheet vertex operators that differ

in conformal dimensions by integers. The crosscap state is not charged under massless

RR fields.

• The J = 0 crosscap states exchanges massless closed strings, including the winding

tachyon in the NSNS sector, and the massless RR scalar. Again the exchanged states

differ by an integer in their worldsheet conformal dimensions.

We move on to finalize our analysis of amplitudes in the unoriented theory. We compute

the overlap of the crosscap states with the flavour D5-branes.
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2.4 D5 brane Möbius amplitudes

We start out by calculating the overlap of the J = 1
2 crosscap with the J = 1

2 D5 brane in

the NS+NS− sector as this corresponds to an NS sector open string amplitude.

MNS

Ω

(

D5, J =
1

2
;J =

1

2

)

= 2

∫

ds

128π4

∑

n∈Z

∫ ∞

0
dPΨNS,∓

cont,J= 1

2

(−P, 2n)ΨNS,±

C,cont,J= 1

2

(P, 2n)

qP 2+n2

[

e
πi

8 ϑ01(is + 1
2)

η(is + 1
2)

]2

. (2.24)

Substituting the wavefunctions using equations (2.6) and (2.16), one gets

MNS

Ω

(

D5, J =
1

2
;J =

1

2

)

= 4i

∫

ds

128π4

∑

n∈Z

∫ ∞

0

dP

(sinh πP )2
eiπn qP 2+n2

c

[

e
iπ

8

ϑ01(is + 1
2)

η3(is + 1
2)

]2

= 4i

∫

ds

128π4

∫ ∞

0

dP

(sinhπP )2
qP 2

c ϑ01(2is)

[

e
iπ

8

ϑ01(is + 1
2 )

η3(is + 1
2)

]2

.

(2.25)

Modular transforming this to the open channel using s = 1
4t , we obtain

MNS

Ω

(

D5, J =
1

2
;J =

1

2

)

=

∫

dt

128π4t3
e

πi

8 ϑ00(it + 1
2)

η3(it + 1
2)

∫ ∞

0
dP ′ ρNS

2,M (P ′)ChNS

Ω (P ′, 1, it)

where ChNS

Ω (P,m, τ) = qP 2

Θm,1(τ)
e

iπ

8 ϑ00(τ + 1
2)

η3(τ + 1
2)

(2.26)

and ρNS
2,M =

∫ ∞

0
dP

cos 2πPP ′

(sinh πP )2
.

Here we have used the identity ϑ10(τ + 1) = e
iπ

4 ϑ10(τ) and defined the Ω-twisted extended

character ChΩ . We observe that this modifies the density of states ρ2 in the D5 self

overlap (with a divergent contribution) [11, 7]. Note that the constants conspire so that

in the P → 0 limit of the sum of the cylinder and Möbius amplitudes, the projection

in the open string channel is purely by Ω on the massless open string states. A similar

computation yields the characters for the other sectors ChfNS

Ω (P ′, 1, it) and ChR

Ω(P ′, 1, it)

with the same density of states (2.26).

Let us repeat this exercise for the overlap of the J = 0 crosscap with the J = 1
2

D5-brane in the NS+NS− sector:

MNS

Ω

(

D5, J =
1

2
;J = 0

)

= −4

∫

ds

128π4

∫ ∞

0

dP

cosh πP
ϑ10(2is) qP 2

c

[

e
iπ

8

ϑ01(is + 1
2)

η3(is + 1
2 )

]2

.

(2.27)

Modular transforming this into the open string channel, we get

MNS

Ω (D5, J =
1

2
;J = 0) =

∫

dt

128π4t3
e

πi

8 ϑ00(it + 1
2)

η3(it + 1
2 )

∫ ∞

0
dP ′ ρNS

1,M (P ′)ChNS

Ω (P ′, 0, it),

ρNS

1,M =

∫ ∞

0
dP

cos 2πPP ′

(cosh πP )
. (2.28)
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A similar computation yields the characters for the other sectors ChfNS

Ω (P ′, 0, it) and

ChR

Ω(P ′, 0, it) with the same density of states (2.28). As shown in appendix B, where

all the amplitudes in the other channels have been computed, the total Möbius amplitude

vanishes in each case:

MNS

Ω − M ÑS

Ω − MR

Ω = 0 (2.29)

We therefore observe that the boundary states and crosscap states that we considered are

all mutually space-time supersymmetric. This concludes the calculation of amplitudes that

will be relevant for the gauge theory to be constructed in the next section. These Möbius

amplitudes will be instrumental in inferring what the global symmetry group is for the

gauge theories we construct in the next section. For now, we conclude this section with

the following observation:

• The J = 0 crosscap overlap with the J = 1
2 extended brane gives a density of

states which is spread a little around P ′ = 0 but decays rapidly as P ′ → 0. This is

consistent with the fact that the J = 0 crosscap is localized at the tip of the cigar.

It is interesting that unlike the previous examples studied for localized D-branes, we

do not get a sharp δ−function in this case for the localized crosscap.

3. Microscopic description of Seiberg duality

3.1 The electric set-up

We now have all the ingredients, the boundary states and crosscap states, to engineer the

gauge theories of interest to us. We start with the electric description of the gauge theory.

To engineer an SO(Nc) gauge theory with Nf flavours, we consider a configuration of Nc

|D3〉 branes, Nf |D5;J = 1
2〉 branes and an orientifold state |C,µ〉 which is the difference

of the J = 1
2 and J = 0 crosscap states discussed in the earlier sections

|C,µ〉 = |C, J = M = 1/2, µ〉 − |C, J = M = 0, µ〉. (3.1)

We first discuss the pure gauge theory degrees of freedom.

3.1.1 Pure gauge theory

The orientifold does not act on the gauge field vertex operators themselves, but has an

action on the Chan-Paton factors. Effectively, it makes the 3 − 3 strings unoriented. In

the presence of the orientifold, the D3 branes realize a four-dimensional SO(Nc) gauge

theory with N = 1 supersymmetry on their worldvolume. To see this, one can combine

the D3-brane cylinder amplitude in the oriented theory, divided by 2 (from the orientifold

projection operator) and multiplied by Nc squared, and the Möbius amplitudes of subsec-

tion 2.2, divided by 2, and multiplied by Nc to obtain the amplitude that codes the open

string spectrum projected by the orientifold operation. The first term in the expansion of

the amplitude, for the SO(Nc) gauge theory is then:

Z =
N2

c − Nc

2
.(2 − 2) + . . . (3.2)
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which has the interpretation as counting the transverse polarizations of a vector field in

the adjoint of the SO(Nc) gauge group (as well as the corresponding gauginos). The Sp

gauge group is realized by taking the opposite (overall) sign of the orientifold plane.

We can confirm the above picture as follows. From the ratio of one-point functions

for the RR scalar, we can read of the charge of the crosscap state relative to the charge

of the D5-brane. A short calculation gives that the ratio of the J = 0 crosscap charge to

that of the D5-brane is −4. It is therefore +2 times the charge of an unmirrored D3-brane.

Therefore minus the J = 0 crosscap state projects onto SO gauge theories on the D3-brane.

We note in passing that for the gauge theory without flavours, we can argue follow-

ing [17] that the breaking of the anomalous U(1)R is encoded in the backreaction of the

D3-branes and the orientifold plane on the RR-scalar. The scalar will develop a depen-

dence on the angular cigar variable that is proportional to Nc∓2 for SO/Sp gauge theories.

Taken into account the properly quantized shift symmetry of the RR-scalar, this then codes

the breaking of U(1)R to Z2ȟ in the quantum theory (where ȟ is the dual coxeter number

of the gauge algebra).

3.1.2 Adding flavour

We now turn to adding flavour. The J = 1
2 brane does not have any massless localized

modes in an overlap with either of the crosscaps. This may be seen from the small q

expansions of the Möbius overlaps in section 2.4 and in the appendix B. Thus the only

other massless four-dimensional modes in this setup arise from the unoriented D3 − D5

strings. These are chiral superfields Qia, a = 1, . . . , Nc, i = 1, . . . , Nf which fall into the

vector representation of SO(Nc). The theory on the worldvolume of the branes at low

energies is thus a four-dimensional SO(Nc) gauge theory with Nf quarks, which has N = 1

supersymmetry.

From the D5 Möbius amplitudes, we also read off that the global symmetry group

is indeed Sp(Nf ). This can be seen as follows: while the massless D3-brane spectrum is

projected by both the J = 0 and the J = 1/2 crosscap, the D5-brane massless spec-

trum is only affected in the open string channel by the non-compact J = 1/2 cross-

cap. This can be checked by expanding the Möbius amplitudes for the D5-brane with

the J = 0 crosscap and finding only massive modes in the open string channel (see equa-

tions (B.10), (B.11), (B.12)). Moreover, by expanding the Möbius amplitudes that project

the massless modes in the open string channel for the D3-brane (see subsection B.1) com-

pared to the D5-brane (see subsection B.2), we see that the Möbius amplitudes have a

relative minus sign. This can be traced back to the relative sign in the full orientifold that

corresponds to subtraction of the J = 0 and the J = 1/2 crosscaps (plus the fact that the

main contribution to the D3-brane Möbius amplitude is from the J = 0 crosscap). The

relative minus sign between the D3 and D5 Möbius amplitudes codes the fact that the

global symmetry group is Sp when the gauge group is SO (and vice versa). We believe

this to be a relevant check on our brane set-up.

3.2 Worldsheet analysis of µ−transitions and the magnetic theory

Now that we have identified the relevant boundary states and crosscaps, we can proceed,
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following [7], to infer Seiberg duality from the worldsheet. In what follows, we use the

known transformations of the D-brane states under the µ-flip transformation µ → −µ, the

consequent rearrangement of the D-branes in the charge lattice, mutual supersymmetry

with the final µ-flipped configuration as well as some physical statements about tensions

to infer the behaviour of the crosscap states under the µ−flip. We first review the trans-

formation of the boundary states following. Since most of the details can be found in [7],

we will be brief in our discussion.

3.2.1 Behaviour of boundary states and crosscaps under µ−transitions

The behavior of the D3 and D5-brane boundary states under a sign-flip of the coefficient

µ of the cigar interaction term (i.e. the N=2 Liouville interaction term corresponding to

a winding condensate) was determined in [7]. The first ingredient in the derivation is the

fact that the bulk vertex operators satisfy a reflection relation, and therefore their one-

point functions satisfy it as well [9]. This determines the µ dependence of the one-point

functions for the boundary states, as well as the crosscap states. The µ-dependence of

the closed string one-point functions in the NSNS sector amounts to an overall factor of

µiP−Q/2µiP+Q/2 where P is the momentum of the closed string, and Q is the (worldsheet

left-moving) U(1)R charge of the closed string vertex operator.

We recall that D3-branes are localized objects with a well-defined mass. The gravita-

tional backreaction is dominantly on the on-shell mode with asymptotic behaviour e−2ρ, ρ

being the radial direction of the cigar [17]. Under µ → −µ, the one-point function for this

mode flips sign. That shows that the NSNS part of the D3-brane boundary state needs to

pick up an explicit minus sign, when we demand that it maps into a physical D-brane with

positive mass [7].

For the NSNS part of the D5-brane boundary state, the dominant backreaction is

onto the cosmological constant, which does not pick up a minus sign under the µ → −µ

transformation. Moreover, since the D5-brane changes orientation under the Z2 transfor-

mation [7], the RR part of the boundary state flips sign. Charge conservation then fixes

that the D3-brane RR boundary state flips sign as well (leading to a simple overall minus

sign in the boundary state).

Thus, under the Z2 transformation, we have the following transformation of the bound-

ary states [7]:

Nc |D3, µ〉 −→ Nc (−|D3,−µ〉)
Nf |D5, J = 1/2 = M,µ〉 −→ Nf |D5, J = 1/2 = M,−µ〉

−→ Nf |D5, J = M = 0,−µ〉 + Nf (−|D3,−µ〉) . (3.3)

After the annihilation of the Nc D3-branes with Nf anti-D3-branes (for Nf ≥ Nc − 2),

we remain with Nf − Nc color anti-branes, as well as Nf mutually supersymmetric flavor

branes (at J = 0). Thus, on the magnetic side, the colour gauge theory is realized on

Nf − Nc branes of the form (−|D3,−µ〉).
We now turn to the determination of the behaviour of the crosscap states under the

Z2 transformation. Our attitude will be slightly different than in the D-brane case. We
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will only attempt to describe the final configuration that results after the system has fully

relaxed to the supersymmetric configuration. To that end, we would like to understand

the crosscaps which are supersymmetric with respect to the final configuration of D-branes

above in the magnetic theory at −µ. Mutual supersymmetry with the branes (−|D3,−µ〉)
and |D5, J = M = 0,−µ〉 dictates that the relative sign of the NSNS and RR parts of the

crosscap states change (as for the D-branes) when we go from µ → −µ. Moreoever from

the pure bulk theory before double scaling, we know that the exchange of the NS5 and

NS5’ branes before any D-branes are present is a trivial operation. That remains true in

the presence of the orientifold plane, so the Klein-bottle amplitude does not change under

the µ-flip.

We further expect that the gauge theory which is realized on the localized branes is

projected onto an SO group as before. This projection arises from a Möbius amplitude

which is an overlap of the new crosscap with the localized branes in the magnetic theory

(−|D3,−µ〉). These conditions fix the transformation of the crosscap:

|C,µ〉 −→ −|C,µ〉 . (3.4)

We can further argue for this transformation rule by observing that the tension of the J = 0

crosscap is measured by its coupling to the tachyon winding mode and is proportional to

µ. Like the localized D-brane, this also changes sign with µ. That leads to the explicit

minus sign in the transformation rule.3

The charge of the final state is opposite to the initial state when measured correctly

with the new axion which has also changed sign. Unlike the D-brane case, we cannot argue

at the level of boundary/crosscap states that there is a rearrangment of the basis in the final

state, since charge is actually not conserved in this situation described above. The only

possibility consistent with charge conservation, as we shall consider below, is that there are

new charge-carrying localized states which are created during the transition. These will

turn out to be D3 branes.

Intuitively speaking, the localized part of the orientifold, namely the J = 0 crosscap,

accounts for the charge difference between the orientifold four-planes that end on a given

NS5-brane from opposite direction in the type IIA set-up. We will see this more precisely

in the next section where we exhibit pairs of Seiberg dual gauge theories. It will turn out

that the axionic charge measured by the RR scalar in the worldsheet description keeps

track of the spacetime linking number in the IIA set-up.

Finally, we note that the Z2 flip on the parameter µ can be generalized to a transfor-

mation of the parameter µ along the real line. (The parameter µ needs to be real in order

for the Ω(−1)n orientifold to exist. Another way to see this is to observe that there is no

Fayet-Iliopoulos parameter to turn on for the SO/Sp gauge theories.) Thus, in contrast to

the non-critical set-up for SU gauge theories, we necessarily go through a region of strong

3We should note that it is not obvious in this formalism that the tension of the magnetic orientifold

plane in the asymptotic region, as measured in the overlap with the magnetic flavour brane remains positive

(as appropriate for an orientifold plane that projects onto an Sp global symmetry group). This is hidden

in the fact that the propagator appearing in the calculation of the overlap is µ dependent.
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coupling. This is the basic reason why we here take the attitude to describe the final orien-

tifold configuration from scratch, without attempting to follow it closely through the whole

transition process. As shown in [19], it is this motion through the strong coupling region

that creates of the extra localized charged D-brane states, which leads to a conservation of

the axionic charge in the process.

3.2.2 Seiberg duality

It will be useful to be explicit about how charge is conserved under the Z2 transformation.

First of all, in the initial configuration, we measure axionic charge with respect to the

massless RR scalar. In the magnetic theory, we will measure the axionic charge with

respect to a sign-flipped RR scalar (since it flips sign under the Z2 transformation). In the

electric theory we have Nc (unmirrored) color D3-branes and Nf flavor anti-D5 (J=1/2)

branes, giving rise to an SO(Nc) gauge theory with Sp(Nf ) flavour group.

Recalling that in the oriented theory, the axionic charge of the D5 is 1
2 that of the

D3 [7], this configuration contributes to the axionic charge Nc − 1
2Nf . From the previous

section, we conclude that the orientifold plane contributes −2 to the charge, for a total

axionic charge of Nc − 1
2Nf − 2. As mentioned earlier, we observe that this coincides with

the linking number lNS defined for the NS brane in the type IIA set-up in (1.2). The charge

also measures the anomaly in a specific linear combination of the axial flavour U(1)A charge

and the U(1)R charge (which is proportional to QR + 1/2QA in units where the R-charge

of the gaugino and the axial charge of a left-handed quark are both equal to one).

In the magnetic description, after the annihilation of the Nc D3-branes with Nf anti-

D3-branes (for Nf ≥ Nc − 2), we remain with Nf − Nc color anti-branes, as well as Nf

mutually supersymmetric J = 0 flavor branes. Furthermore we have a crosscap state

−|C;−µ〉 which gives a total charge of Nc − 1
2Nf + 2.

The axionic charge in the electric and magnetic configurations differ by four (in the

units of D3 brane charge). Charge conservation therefore necessarily implies that four D3

branes must be created while passing through the strong-coupling region at µ = 0, just as

in the discussion of Seiberg duality in the type IIA NS5 brane set up [4]. Thus the gauge

group in the magnetic theory is SO(Nf −Nc +4). As in the electric setup, there are no new

massless modes being created by the orientifold. Similarly, for the same reasons as in the

electric set-up, the global symmetry group is Sp(Nf ) also in the magnetic configuration.

The other massless localized modes in the magnetic setup are the magnetic quarks

arising from the D3 − D5 strings and the meson from the D5 − D5 overlap. As in the

SU(N) case [7], the overlap of the extended brane at J = 0 gives rise, in addition to a

six-dimensional continuum of modes, to a four dimensional localized massless scalar with

the quantum numbers of the meson. This arises from a correct convergent definition of the

overlap which involves a contour prescription [28, 7].4

4This is the only mode that arises in the localized contribution of the D5 overlap. There is another

massless localized mode with the quantum numbers Aia which arises in the D3 − D5(J = 0) overlap, but

the symmetries forbid a minimal gauge coupling of this mode with any of the massless fields. This is

interpreted as the fact that this gauge field gets a mass, as suggested by the ten-dimensional picture [3].
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To summarize, the magnetic theory has gauge fields, quarks, as well as mesonic degrees

of freedom. As in the electric setup, the strings fluctuations which gave rise to the quarks

and mesons are now also unoriented. The matter content of this gauge theory is Nf quarks

qia, a = 1, . . . , (Nf − Nc), i = 1, . . . , Nf in the vector representation and a meson M ij in

the symmetric representation of the Sp(Nf ) global flavor symmetry.

4. Conclusions

The main technical result in our work is the construction of exact crosscap states in the

cigar background using the modular bootstrap method. Using these states in conjunction

with the known D-brane boundary states [16, 17] in this background, we engineered four

dimensional SO/Sp gauge theories with fundamental flavours. We found that microscopi-

cally, we could interpret Seiberg duality as a re-arrangement of the basis of boundary states

and crosscaps under the µ → −µ transformation in the conformal field theory moduli space.

The exact microscopic realization of Seiberg duality in N = 1 SO/Sp gauge theories

with flavour is rendered more subtle than its SU(Nc) counterpart [7] by the fact that

the µ−transition necessarily takes us through the strong coupling region. In the exact

realization this is expressed through the fact that extra boundary states need to be created

while going through the strong coupling region of the gauge theory. This was derived in

the non-critical set-up by using a charge conservation argument similar to the one used in

the context of the IIA brane set-ups we discussed in the introduction. The relevant charge

in this case turns out to be the axionic charge measured by the RR scalar.

The crosscap states that we used to engineer the gauge theory with flavour still have

a geometric interpretation in this highly curved regime of string theory. In principle, one

would like to connect these orientifold crosscap states to their asymptotically flat ancestors,

tracking them through the double scaling limit [6], thereby connecting them to geometric

orientifold planes in flat space. One can use the added control over these states afforded

by the CFT to probe in detail the gauge theory on the branes beyond the information

which can be read off from the singular ten-dimensional setup. As discussed in [7], the full

theory on the branes at non-zero energies could have contributions from other open and

closed string modes. Regarding this point, we note that in the presence of the orientifolds

we must also take into account any potential contributions from the closed string twisted

sectors arising from the various Klein bottles.

We only discussed boundary states and crosscaps based on the continuous representa-

tions of the N = 2 superconformal algebra. These are double-sheeted objects on the cigar

and as a result, there were no constraints coming from tadpole cancellation. However, it

is probable that including boundary states and crosscaps based on discrete representations

would allow us to include chiral matter into the gauge theory through clever cancellation

of RR tadpoles arising from D-branes and orientifold planes. We leave this as an open

problem.

Finally, it would be very interesting to generalize the implementation of Seiberg duality

in non-critical strings to more general gauge theories with product gauge groups and bi-

fundamental matter obtained by putting supersymmetric branes in (oriented or unoriented)
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non-compact Gepner models. Such theories have been studied in the context of geometric

engineering in [29]. It would be interesting to see if the description of Seiberg duality given

in that reference (for instance, as Weyl reflections of the simple roots in the special case of

the ADE quivers) can be given a worldsheet description. When the moduli of the conformal

field theory are complex, we expect Seiberg duality to emerge as a monodromy in the space

of couplings. When orientifolds are present, based on the simple example studied here, we

expect that the duality will manifest itself as a rearrangement of boundary states and

crosscaps under discrete actions on the space of couplings of suitable Gepner (boundary)

conformal field theories.
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A. Conventions

Our definitions for the ϑab functions are:

ϑ00(τ, ν) =

∞
∑

n=−∞

qn2/2 zn

ϑ01(τ, ν) =
∞
∑

n=−∞

(−1)n qn2/2 zn

ϑ10(τ, ν) =
∞
∑

n=−∞

q(n−1)2/2zn−1/2

ϑ11(τ, ν) = −i

∞
∑

n=−∞

(−1)n q(n−1)2/2zn−1/2 , (A.1)

where q = e2πiτ and z = e2πiν . We also define the level k Θ functions:

Θm,k(τ, ν) =
∞
∑

n=−∞

qk(n+ m

2k
)2 zk(n+ m

2k
) . (A.2)

We will only use the level k = 1 Θm,1(τ, ν) functions with m = 0, 1. The level 1 Θm,1(τ, ν)

functions are related to the ϑ(τ, ν) functions as follows:

Θ0,1(τ, ν) = ϑ00(2τ, ν) Θ1,1(τ, ν) = ϑ10(2τ, ν) . (A.3)
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The following identities are handy in verifying space-time supersymmetry:

ϑ2
00(τ) = ϑ2

00(2τ) + ϑ2
10(2τ)

ϑ2
01(τ) = ϑ2

00(2τ) − ϑ2
10(2τ)

ϑ2
10(τ) = 2ϑ00(2τ)ϑ10(2τ) . (A.4)

Apart from the usual modular transformation rules of the ϑ-functions, the following par-

ticular modular transformations are useful in the unoriented theory [15]:

ϑ00

(

i

4s
+

1

2

)

=
√

2s e
iπ

4 ϑ01

(

is +
1

2

)

ϑ01

(

i

4s
+

1

2

)

=
√

2s e−
iπ

4 ϑ00

(

is +
1

2

)

ϑ10

(

i

4s
+

1

2

)

=
√

2s ϑ10

(

is +
1

2

)

η

(

i

4s
+

1

2

)

=
√

2s η

(

is +
1

2

)

. (A.5)

B. Modular transformation of Möbius amplitudes

B.1 Overlaps of crosscaps with D3 branes

Let us consider equation (2.7) and modular transform the expression into the closed string

channel. Performing the momentum integration, we get

∫

d4k

16π4
e2πiτk2

= − 1

16π4

1

4τ2
=

s2

4π2
. (B.1)

Let us consider the first term in equation (2.7): using the identities in (A.4) the integral

over the modular parameter can be written as

MNS

Ω

(

D3;J =
1

2

)

=

∫

ds
s

8π4

ϑ00(
i
4s + 1

2)

η( i
4s + 1

2)3
e

iπ

4 ϑ10(
i

2s
)

ϑ00(
i
4s + 1

2 )

η( i
4s + 1

2)3
. (B.2)

Using the modular transformations (A.5) this can be written in the closed string channel

as

MNS

Ω

(

D3;J =
1

2

)

= e
iπ

4

∫

ds
s

8π4

[

1

2s

e
iπ

4 ϑ01(is + 1
2)

η(is + 1
2)3

] [

1√
2s

e
iπ

4 ϑ01(is + 1
2)ϑ01(2is)

η(is + 1
2)3

]

= e
iπ

2

∫

ds

16
√

2s π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

ϑ01(2is)
e

iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

= 8e
iπ

2

∫

ds

128π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

∫ ∞

0
dP 2ϑ01(2is) qP 2

c

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2 )3

.

(B.3)
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where qc = e−2πs as usual. Similar manipulations for the ÑS and R sector terms in (2.4)

yield, after modular transformation,

M ÑS

Ω

(

D3;J =
1

2

)

= −8e−
iπ

2

∫

ds

128π4

e
iπ

8 ϑ00(is + 1
2)

η(is + 1
2)3

∫ ∞

0
dP 2ϑ01(2is) qP 2

c

e
iπ

8 ϑ00(is + 1
2)

η(is + 1
2)3

MR

Ω

(

D3;J =
1

2

)

= 8

∫

ds

128π4

ϑ10(is + 1
2 )

η(is + 1
2)3

∫ ∞

0
dP 2ϑ10(2is) qP 2

c

ϑ10(is + 1
2)

η(is + 1
2)3

.

(B.4)

The J = 0 Möbius amplitudes can be similarly modular transformed as follows:

MNS

Ω (D3;J = 0) = 8

∫

ds

128π4

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

∫ ∞

0
dP2 cosh πPϑ10(2is) qP 2

c

e
iπ

8 ϑ01(is + 1
2)

η(is + 1
2)3

M ÑS

Ω (D3;J = 0) = −8

∫

ds

128π4

e
iπ

8 ϑ00(is+ 1
2)

η(is + 1
2)3

∫ ∞

0
dP2 cosh πPϑ10(2is)q

P 2

c

e
iπ

8 ϑ00(is + 1
2)

η(is + 1
2 )3

MR

Ω(D3;J = 0) = 8

∫

ds

128π4

ϑ10(is + 1
2)

η(is + 1
2)3

∫ ∞

0
dP 2 cosh πP ϑ01(2is) qP 2

c

ϑ10(is + 1
2)

η(is + 1
2)3

.

(B.5)

One can check that the total Möbius amplitude vanishes:

MNS

Ω − M fNS

Ω − MR

Ω = 0 (B.6)

B.2 Overlaps of crosscaps with D5 branes

In this section, we merely record the overlaps of the J = 1
2 and J = 0 crosscap states with

the J = 1
2 and J = 0 D-branes in the open string channel. These turn to be important to

infer the flavour gauge group in the unoriented theory.

Overlaps of J = 1

2
D5 brane with J = 1

2
crosscap.

MNS

Ω =

∫

dt

128π4t3

∫ ∞

0

dP

(sinhπP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it +
1

2

)

[

ϑ00(it + 1
2)

η3(it + 1
2 )

]2

.

(B.7)

M ÑS

Ω = −
∫

dt

128π4t3

∫ ∞

0

dP

(sinh πP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it +
1

2

)

[

ϑ01(it + 1
2 )

η3(it + 1
2)

]2

.

(B.8)

MR

Ω =

∫

dt

128π4t3

∫ ∞

0

dP

(sinhπP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it +
1

2

)

[

ϑ10(it + 1
2)

η3(it + 1
2 )

]2

.

(B.9)
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Overlaps of J = 1

2
D5 brane with J = 0 crosscap.

MNS

Ω = e
iπ

2

∫

dt

128π4t3

∫ ∞

0

dP

cosh πP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it +
1

2

)

[

e
iπ

8

ϑ00(it+
1
2 )

η3(it + 1
2)

]2

.

(B.10)

M ÑS

Ω = e
iπ

2

∫

dt

128π4t3

∫ ∞

0

dP

cosh πP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it+
1

2

)

[

e
iπ

8

ϑ01(it + 1
2 )

η3(it + 1
2)

]2

.

(B.11)

MR

Ω = −e−
iπ

4

∫

dt

128π4t3

∫ ∞

0

dP

cosh πP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it+
1

2

)

[

ϑ10(it + 1
2 )

η3(it + 1
2)

]2

.

(B.12)

Overlaps of J = 0 D5 brane with J = 1

2
crosscap.

MNS

Ω =

∫

dt

128π4t3

∫ ∞

0

cosh πPdP

(sinh πP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it+
1

2

)

[

ϑ00(it + 1
2)

η3(it + 1
2)

]2

.

(B.13)

M ÑS

Ω = −
∫

dt

128π4t3

∫ ∞

0

cosh πPdP

(sinhπP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it+
1

2

)

[

ϑ01(it + 1
2 )

η3(it + 1
2)

]2

.

(B.14)

MR

Ω =

∫

dt

128π4t3

∫ ∞

0

cosh πPdP

(sinhπP )2

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it +
1

2

)

[

ϑ10(it + 1
2)

η3(it + 1
2)

]2

.

(B.15)

Overlaps of J = 0 D5 brane with J = 0 crosscap.

MNS

Ω = −e
iπ

2

∫

dt

128π4t3

∫ ∞

0
dP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it +
1

2

)

[

e
iπ

8

ϑ00(it + 1
2)

η3(it + 1
2)

]2

.

(B.16)

M ÑS

Ω = −e
iπ

2

∫

dt

128π4t3

∫ ∞

0
dP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ0,1

(

it +
1

2

)

[

e
iπ

8

ϑ01(it + 1
2)

η3(it + 1
2)

]2

.

(B.17)

MR

Ω = e−
iπ

4

∫

dt

128π4t3

∫ ∞

0
dP

∫ ∞

0
dP ′ cos 2πPP ′qP ′2

o Θ1,1

(

it +
1

2

)

[

ϑ10(it + 1
2 )

η3(it + 1
2)

]2

.

(B.18)

In both cases, one can check that

MNS

Ω − M fNS

Ω − MR

Ω = 0 . (B.19)
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C. Klein bottle amplitudes

In this appendix, we collect some technical details about the Klein botle amplitudes. The

computations of the NS+NS− and R+R+ contributions for the J = 1
2 crosscap state leads

to the expressions:

K( 1

2
)

NS+NS− =
1

2
24

∫

ds

128π4

ϑ01(is)

η3(is)

∫ ∞

0
dP

ϑ00(2is)

(sinhπP )2
qP 2

c

ϑ01(is)

η3(is)

=
1

2

∫

dt

128π4 t3
ϑ10(2it)

η3(2it)

∫ ∞

0

dP

(sinh πP )2
[Θ0,1(2it) + Θ1,1(2it)]

×
∫ ∞

0
dP ′ cos 2

√
2πPP ′ qP ′2

o

ϑ10(2it)

η3(2it)
. (C.1)

K( 1

2
)

R+R+ =
1

2
24

∫

ds

128π4

ϑ10(is)

η3(is)

∫ ∞

0
dP

ϑ10(2is)

(sinh πP )2
qP 2

c

ϑ10(is)

η3(is)

=
1

2

∫

dt

128π4 t3
ϑ01(2it)

η3(2it)

∫ ∞

0

dP

(sinh πP )2
[Θ0,1(2it) − Θ1,1(2it)]

×
∫ ∞

0
dP ′ cos 2

√
2πPP ′ qP ′2

o

ϑ01(2it)

η3(2it)
. (C.2)

where we used the identity

ϑ01(τ) = ϑ00(4τ) − ϑ10(4τ) . (C.3)

All contributions to the crosscap self overlap are singular as P → 0 and the total contri-

bution to the Klein-bottle amplitude vanishes because of the identity

ϑ00(2is)

(

ϑ2
00(is)

η6(is)
− ϑ2

01(is)

η6(is)

)

− ϑ10(2is)
ϑ2

10(is)

η6(is)
= 0 . (C.4)

The calculations for the J = 0 crosscap are similar to the ones done above. We get:

K(0)
NS+NS+ = 24

∫

ds

128π4

ϑ00(is)

η3(is)

∫ ∞

0
dP ϑ10(2is) qP 2

c

ϑ00(is)

η3(is)

=

∫

dt

32
√

2π4 t3
ϑ00(2it)

η3(2it)
[Θ0,1(2it) − Θ1,1(2it)]

ϑ00(2it)

η3(2it)
. (C.5)

K(0)
NS+NS− = 24

∫

ds

128π4

ϑ01(is)

η3(is)

∫ ∞

0
dP ϑ10(2is) qP 2

c

ϑ01(is)

η3(is)

=

∫

dt

32
√

2π4 t3
ϑ10(2it)

η3(2it)
[Θ0,1(2it) − Θ1,1(2it)]

ϑ10(2it)

η3(2it)
. (C.6)

K(0)
R+R+ = 24

∫

ds

128π4

ϑ10(is)

η3(is)

∫ ∞

0
dP ϑ00(2is) qP 2

c

ϑ10(is)

η3(is)

=

∫

dt

32
√

2π4 t3
ϑ01(2it)

η3(2it)
[Θ0,1(2it) + Θ1,1(2it)]

ϑ01(2it)

η3(2it)
. (C.7)
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Note that in the t-channel the density of states is a delta function as a result of which there

is no integral over the momenta in the radial direction of the cigar. Thus, the self overlap

is regular as P → 0 and vanishes because of the identity (in the s-channel)

ϑ10(2is)

(

ϑ2
00(is)

η6(is)
+

ϑ2
01(is)

η6(is)

)

− ϑ00(2is)
ϑ2

10(is)

η6(is)
= 0 . (C.8)
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